OPERATING SYSTEMS:
DESIGN AND IMPLEMENTATION

THIRD EDITION

PROBLEM SOLUTIONS

ANDREW S. TANENBAUM

Vrije Universiteit
Amsterdam, The Netherlands

ALBERT S. WOODHULL

Amherst, Massachusetts

PRENTICE HALL

UPPER SADDLE RIVER, NJ 07458

SOLUTIONS TO CHAPTER 1 PROBLEMS

. An operating system must provide the users with an extended (i.e., virtual)
machine, and it must manage the I/O devices and other system resources.

. In kernel mode, every machine instruction is allowed, as is access to all the
I/O devices. In user mode, many sensitive instructions are prohibited.
Operating systems use these two modes to encapsulate user programs. Run-
ning user programs in user mode keeps them from doing I/O and prevents
them from interfering with each other and with the kernel.

. Multiprogramming is the rapid switching of the CPU between multiple
processes in memory. It is commonly used to keep the CPU busy while one
or more processes are doing 1/0.

. Input spooling is the technique of reading in jobs, for example, from cards,
onto the disk, so that when the currently executing processes are finished,
there will be work waiting for the CPU. Output spooling consists of first
copying printable files to disk before printing them, rather than printing
directly as the output is generated. Input spooling on a personal computer is
not very likely, but output spooling is.

. The prime reason for multiprogramming is to give the CPU something to do
while waiting for I/O to complete. If there is no DMA, the CPU is fully occu-
pied doing I/O, so there is nothing to be gained (at least in terms of CPU utili-
zation) by multiprogramming. No matter how much I/O a program does, the
CPU will be 100 percent busy. This of course assumes the major delay is the
wait while data is copied. A CPU could do other work if the I/O were slow
for other reasons (arriving on a serial line, for instance).

. Second generation computers did not have the necessary hardware to protect
the operating system from malicious user programs.

. Choices (a), (c), and (d) should be restricted to kernel mode.

. Personal computer systems are always interactive, often with only a single
user. Mainframe systems nearly always emphasize batch or timesharing with
many users. Protection is much more of an issue on mainframe systems, as is
efficient use of all resources.

. Arguments for closed source are that the company can vet the programmers,
establish programming standards, and enforce a development and testing
methodology. The main arguments for open source is that many more people
look at the code, so there is a form of peer review and the odds of a bug slip-
ping in are much smaller with so much more inspection.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

PROBLEM SOLUTIONS FOR CHAPTER 1

The file will be executed.

It is often essential to have someone who can do things that are normally for-
bidden. For example, a user starts up a job that generates an infinite amount
of output. The user then logs out and goes on a three-week vacation to Lon-
don. Sooner or later the disk will fill up, and the superuser will have to manu-
ally kill the process and remove the output file. Many other such examples
exist.

Any file can easily be named using its absolute path. Thus getting rid of
working directories and relative paths would only be a minor inconvenience.
The other way around is also possible, but trickier. In principle if the working
directory is, say, /home/ast/projects/research/projl one could refer to the
password file as ../../../../etc/passwd, but it is very clumsy. This would not be a
practical way of working.

The process table is needed to store the state of a process that is currently
suspended, either ready or blocked. It is not needed in a single process sys-
tem because the single process is never suspended.

Block special files consist of numbered blocks, each of which can be read or
written independently of all the other ones. It is possible to seek to any block
and start reading or writing. This is not possible with character special files.

The read works normally. User 2’s directory entry contains a pointer to the
i-node of the file, and the reference count in the i-node was incremented when
user 2 linked to it. So the reference count will be nonzero and the file itself
will not be removed when user 1 removes his directory entry for it. Only
when all directory entries for a file have been removed will its i-node and
data actually vanish.

No, they are not so essential. In the absence of pipes, program 1 could write
its output to a file and program 2 could read the file. While this is less
efficient than using a pipe between them, and uses unnecessary disk space, in
most circumstances it would work adequately.

The display command and reponse for a stereo or camera is similar to the
shell. It is a graphical command interface to the device.

Windows has a call spawn that creates a new process and starts a specific
program in it. It is effectively a combination of fork and exec.

If an ordinary user could set the root directory anywhere in the tree, he could
create a file etc/passwd in his home directory, and then make that the root
directory. He could then execute some command, such as su or login that
reads the password file, and trick the system into using his password file,
instead of the real one.

20.

21.

22,
23.

24,

25.
26.

PROBLEM SOLUTIONS FOR CHAPTER 1 3

The getpid, getuid, getgid, and getpgrp, calls just extract a word from the pro-
cess table and return it. They will execute very quickly. They are all equally
fast.

The system calls can collectively use 500 million instructions/sec. If each
call takes 1000 instructions, up to 500,000 system calls/sec are possible while
consuming only half the CPU.

No, unlink removes any file, whether it be for a regular file or a special file.

When a user program writes on a file, the data does not really go to the disk.
It goes to the buffer cache. The update program issues SYNC calls every 30
seconds to force the dirty blocks in the cache onto the disk, in order to limit
the potential damage that a system crash could cause.

No. What is the point of asking for a signal after a certain number of seconds
if you are going to tell the system not to deliver it to you?

Yes it can, especially if the system is a message passing system.

When a user program executes a kernel-mode instruction or does something
else that is not allowed in user mode, the machine must trap to report the
attempt. The early Pentiums often ignored such instructions. This made them
impossible to fully virtualize and run an arbitrary unmodified operating sys-
tem in user mode.

SOLUTIONS TO CHAPTER 2 PROBLEMS

. It is central because there is so much parallel or pseudoparallel activity—

multiple user processes and I/O devices running at once. The multiprogram-
ming model allows this activity to be described and modeled better.

The states are running, blocked and ready. The running state means the pro-
cess has the CPU and is executing. The blocked state means that the process
cannot run because it is waiting for an external event to occur, such as a mes-
sage or completion of I/O. The ready state means that the process wants to
run and is just waiting until the CPU is available.

. You could have a register containing a pointer to the current process table

entry. When I/O completed, the CPU would store the current machine state
in the current process table entry. Then it would go to the interrupt vector for
the interrupting device and fetch a pointer to another process table entry (the
service procedure). This process would then be started up.

Generally, high level languages do not allow one the kind of access to CPU
hardware that is required. For instance, an interrupt handler may be required
to enable and disable the interrupt servicing a particular device, or to

10.

11.

PROBLEM SOLUTIONS FOR CHAPTER 2

manipulate data within a process’ stack area. Also, interrupt service routines
must execute as rapidly as possible.

. The figure looks like this

Terminated

. New process made ready

. Process blocks for input

. Scheduler picks another process
. Scheduler picks this process

. Input becomes available

a A WON -~ O

. Process is terminated

It would be difficult, if not impossible, to keep the file system consistent using
the model in part (a) of the figure. Suppose that a client process sends a
request to server process 1 to update a file. This process updates the cache
entry in its memory. Shortly thereafter, another client process sends a request
to server 2 to read that file. Unfortunately, if the file is also cached there,
server 2, in its innocence, will return obsolete data. If the first process writes
the file through to the disk after caching it, and server 2 checks the disk on
every read to see if its cached copy is up-to-date, the system can be made to
work, but it is precisely all these disk accesses that the caching system is try-
ing to avoid.

A process is a grouping of resources: an address space, open files, signal
handlers, and one or more threads. A thread is just an execution unit.

Each thread calls procedures on its own, so it must have its own stack for the
local variables, return addresses, and so on.

A race condition is a situation in which two (or more) process are about to
perform some action. Depending on the exact timing, one or other goes first.
If one of the processes goes first, everything works, but if another one goes
first, a fatal error occurs.

One person calls up a travel agent to find about price and availability. Then
he calls the other person for approval. When he calls back, the seats are gone.

A possible shell script might be:

if [! —f numbers]; echo 0 > numbers; fi
count=0
while (test $count =200)
do
count=‘expr $count + 1 °

12.

13.
14.

15.

PROBLEM SOLUTIONS FOR CHAPTER 2 5

n="tail =1 numbers"
expr $n + 1 >>numbers
done

Run the script twice simultaneously, by starting it once in the background
(using &) and again in the foreground. Then examine the file numbers. It
will probably start out looking like an orderly list of numbers, but at some
point it will lose its orderliness, due to the race condition created by running
two copies of the script. The race can be avoided by having each copy of the
script test for and set a lock on the file before entering the critical area, and
unlocking it upon leaving the critical area. This can be done like this:

if In numbers numbers.lock
then
n="ail —1 numbers'
expr $n + 1 >>numbers
rm numbers.lock
fi

This version will just skip a turn when the file is inaccessible, variant solu-
tions could put the process to sleep, do busy waiting, or count only loops in
which the operation is successful.

Yes, at least in MINIX 3. Since LINK is a system call, it will activate server
and task level processes, which, because of the multi-level scheduling of
MINIX 3, will receive priority over user processes. So one would expect that
from the point of view of a user process, linking would be equivalent to an
atomic act, and another user process could not interfere. Also, even if another
user process gets a chance to run before the LINK call is complete, perhaps
because the disk task blocks looking for the inode and directory, the servers
and tasks complete what they are doing before accepting more work. So,
even if two processes try to make a LINK call at the same time, whichever one
causes a software interrupt first should have its LINK call completed first.

Yes, it still works, but it still is busy waiting, of course.

Yes it can. The memory word is used as a flag, with 0 meaning that no one is
using the critical variables and 1 meaning that someone is using them. Put a
1 in the register, and swap the memory word and the register. If the register
contains a 0 after the swap, access has been granted. If it contains a 1, access
has been denied. When a process is done, it stores a O in the flag in memory.

To do a semaphore operation, the operating system first disables interrupts.
Then it reads the value of the semaphore. If it is doing a DOWN and the
semaphore is equal to zero, it puts the calling process on a list of blocked
processes associated with the semaphore. If it is doing an UP, it must check

16.

17.

18.

19.

20.

21.

22,

23.

PROBLEM SOLUTIONS FOR CHAPTER 2

to see if any processes are blocked on the semaphore. If one or more
processes are blocked, one of then is removed from the list of blocked
processes and made runnable. When all these operations have been com-
pleted, interrupts can be enabled again.

Associated with each counting semaphore are two binary semaphores, M,
used for mutual exclusion, and B, used for blocking. Also associated with
each counting semaphore is a counter that holds the number of UPs minus the
number of DOWNSs, and a list of processes blocked on that semaphore. To
implement DOWN, a process first gains exclusive access to the semaphores,
counter, and list by doing a DOWN on M. It then decrements the counter. If
it is zero or more, it just does an UP on M and exits. If M is negative, the pro-
cess is put on the list of blocked processes. Then an UP is done on M and a
DOWN is done on B to block the process. To implement UP, first M is
DOWNed to get mutual exclusion, and then the counter is incremented. If it
is more than zero, no one was blocked, so all that needs to be done is to UP
M. If, however, the counter is now negative or zero, some process must be
removed from the list. Finally, an UP is done on B and M in that order.

With round robin scheduling it works. Sooner or later L will run, and eventu-
ally it will leave its critical region. The point is, with priority scheduling, L
never gets to run at all; with round robin, it gets a normal time slice periodi-
cally, so it has the chance to leave its critical region.

It is very expensive to implement. Each time any variable that appears in a
predicate on which some process is waiting changes, the run-time system
must re-evaluate the predicate to see if the process can be unblocked. With
the Hoare and Brinch Hansen monitors, processes can only be awakened on a
SIGNAL primitive.

The employees communicate by passing messages: orders, food, and bags in
this case. In MINIX terms, the four processes are connected by pipes.

It does not lead to race conditions (nothing is ever lost), but it is effectively
busy waiting.

If a philosopher blocks, neighbors can later see that he is hungry by checking
his state, in fest, so he can be awakened when the forks are available.

The change would mean that after a philosopher stopped eating, neither of his
neighbors could be chosen next. With only two other philosophers, both of
them neighbors, the system would deadlock. With 100 philosophers, all that
would happen would be a slight loss of parallelism.

Variation 1: readers have priority. No writer may start when a reader is
active. When a new reader appears, it may start immediately unless a writer is
currently active. When a writer finishes, if readers are waiting, they are all

24.
25.

26.

27.

28.

PROBLEM SOLUTIONS FOR CHAPTER 2 7

started, regardless of the presence of waiting writers. Variation 2: Writers
have priority. No reader may start when a writer is waiting. When the last
active process finishes, a writer is started, if there is one, otherwise, all the
readers (if any) are started. Variation 3: symmetric version. When a reader is
active, new readers may start immediately. When a writer finishes, a new
writer has priority, if one is waiting. In other words, once we have started
reading, we keep reading until there are no readers left. Similarly, once we
have started writing, all pending writers are allowed to run.

It will need nT sec.

If a process occurs multiple times in the list, it will get multiple quanta per
cycle. This approach could be used to give more important processes a larger
share of the CPU.

The CPU efficiency is the useful CPU time divided by the total CPU time.
When Q =T, the basic cycle is for the process to run for 7 and undergo a pro-
cess switch for S. Thus (a) and (b) have an efficiency of 7/(S + T). When
the quantum is shorter than 7, each run of T will require 7/Q process
switches, wasting a time ST/Q. The efficiency here is then

. r
T +ST/Q

which reduces to Q/(Q + S), which is the answer to (c). For (d), we just sub-
stitute Q for S and find that the efficiency is 50 percent. Finally, for (e), as
Q — 0 the efficiency goes to 0.

Shortest job first is the way to minimize average response time.
0<X<3:X 35,6,
3<X<5:3,X, 5,6,
5<X<6:3,5,X,6
6<X<9:3,5,6, X,
X>9:3,56,9 X

For round robin, during the first 10 minutes each job gets 1/5 of the CPU. At
the end of 10 minutes, C finishes. During the next 8 minutes, each job gets
1/4 of the CPU, after which time D finishes. Then each of the three remain-
ing jobs gets 1/3 of the CPU for 6 minutes, until B finishes, and so on. The
finishing times for the five jobs are 10, 18, 24, 28, and 30, for an average of
22 minutes. For priority scheduling, B is run first. After 6 minutes it is
finished. The other jobs finish at 14, 24, 26, and 30, for an average of 18.8
minutes. If the jobs run in the order A through E, they finish at 10, 16, 18, 22,
and 30, for an average of 19.2 minutes. Finally, shortest job first yields
finishing times of 2, 6, 12, 20, and 30, for an average of 14 minutes.

>

9
9.
9.
9

29.

30.
31.

32,

33.

34.

3s.

36.

37.

38.

PROBLEM SOLUTIONS FOR CHAPTER 2

The first time it gets 1 quantum. On succeeding runs it gets 2, 4, 8, and 15, so
it must be swapped in 5 times.

The sequence of predictions is 40, 30, 35, and now 25.

Yes. Two-level scheduling could be used if memory is too small to hold all
the ready processes. Some set of them is put into memory, and a choice is
made from that set. From time to time, the set of in-core processes is
adjusted. This algorithm is easy to implement and reasonably efficient, cer-
tainly a lot better than say, round robin without regard to whether a process
was in memory or not.

There are three ways to pick the first one, four ways to pick the second, three
ways to pick the third and four ways to pick the fourth, for a total of
3 x4 x3x4=144. Note that a thread can be chosen a second time.

The fraction of the CPU used is 35/50 + 20/100 + 10/200 + x/250. To be
schedulable, this must be less than 1. Thus x must be less than 12.5 msec.

This pointer makes it easy to find the place to save the registers when a pro-
cess switch is needed, either due to a system call or an interrupt.

When a clock or keyboard interrupt occurs, and the task that should get the
message is not blocked, the system has to do something strange to avoid los-
ing the interrupt. With buffered messages this problem would not occur.
Notification bitmaps provide provide a simple alternative to buffering.

While the system is adjusting the scheduling queues, they can be in an incon-
sistent state for a few instructions. It is essential that no interrupts occur dur-
ing this short interval, to avoid having the queues accessed by the interrupt
handler while they are inconsistent. Disabling interrupts prevents this prob-
lem by preventing recursive entries into the scheduler.

When a RECEIVE is done, a source process is specified, telling who the
receiving process is interested in hearing from. The loop checks to see if that
process is among the process that are currently blocked trying to send to the
receiving process. Each iteration of the loop examines another blocked pro-
cess to see who it is.

Tasks, drivers and servers get large quanta, but even they can be preempted if
they run too long. Also if a driver or server is not allowing other processes to
run it can be demoted to a lower-priority queue. Even though they are given
large quanta, all system processes are expected to block eventually. They
only run to carry out work requested by user processes, and eventually they
will complete their work and allow user processes to run.

39.

PROBLEM SOLUTIONS FOR CHAPTER 2 9

MINIX 3 could probably be used for data logging with long sampling periods,
for instance weather monitoring, but there is no way to guarantee immediate
availability in response to an external event. However, faster data acquisition
would be possible if the data to be collected were received by means of an
existing interface supported by an interrupt (i.e., a serial port), or if a new
interrupt-driven driver for an interface to the data source were added. Also,
the priorities of drivers and servers are not engraved in stone—a new driver
could be configured to run at higher priority than existing drivers or existing
drivers could be configured for lower priorities in order to provide better ser-
vice for a time critical interface.

SOLUTIONS TO CHAPTER 3 PROBLEMS

. With 1x at 1.32 MB/sec and USB 2.0 at 60 MB/sec, a 45x DVD drive would

just barely make it. In practice, 30x or 40x might be safer though.

One possibility is for the disk controller to notice and reread the block. If it is
successful the second time, the software is not even told about the error
(except possibly for logging purposes). An alternative is to report all errors to
the device driver and let it worry about the problem. With a sophisticated
drive with advanced integrated electronics repeated errors might lead to
automatic substitution of a spare sector for the faulty one.

. Memory-mapped I/O puts the I/O registers in the normal memory space so

they can be accessed just as any other memory locations. This allows them to
be accessed by any machine instruction. It also allows them to be protected
by whatever memory-management scheme is used (e.g., paging).

Most I/O consists of repeatedly transferring bytes between an I/O device and
consecutive locations in memory. DMA allows this transfer to be performed
by a special chip rather than the main CPU, thus freeing up the CPU for other
work in parallel with the transfer.

. The limiting factor could be the speed the device can produce data, the speed

of the bus, or the speed of the memory.

At 1 GHz, the total time required per second for interrupt handling is 44,100
microsec or 44.1 msec. If this were 22.67 times slower, it would take up the
entire CPU, so we can reduce the clock by this factor to get a 44.1 MHz
clock.

10

10.

11.

12.

13.

14.
15.
16.

PROBLEM SOLUTIONS FOR CHAPTER 3

In situations where response time after an external signal is asserted must be
minimized, polling may be better, especially in embedded applications.
Catching an interrupt, changing the page map, flushing all the caches, etc.
takes some time so polling is generally faster. If the CPU has nothing else to
do while waiting (as is often the case in embedded applications), polling is
probably preferred.

When the controller does a read, it generally continues to read the rest of the
track it just read from and store the data in case it needs it later. The more
internal memory it has, the more tracks it can store like this and the better the
performance. Faster processors demand faster data access, but the same
advances in technology make bigger buffers more affordable.

The system calls the driver to get work done, such as read or write a block of
data, turn lights on the device on or off, or go into a low-power state. The
driver calls the system when unpredictable data arrives, such as a key press
on a keyboard or a button push on a mouse, and to get system services such as
allocating memory for buffering data.

Operating system designers want users to be able to do I/O without worrying
about the characteristics of the device. Having to code differently to access an
IDE disk vs. a SCSI disk would be a real nuisance. Characteristics such as
device speed, block size, and geometry, among many others, should be com-
pletely hidden from users.

(a) Device driver.

(b) Device-independent software.
(c) Device driver.

(d) Device-independent software.
(e) User-level software.

If the printer were assigned as soon as the output appeared, a process could
tie up the printer by printing a few characters and then going to sleep for a
week.

Imagine that four cars pull up to a four-way stop simultaneously. If the rule
is first-come first-served, no one was first so no one can go. If the rule is car
on the right goes first, they are equally deadlocked. There are obviously
many other answers.

Neither change leads to deadlock. There is no circular wait in either case.
A request from D is unsafe, but one from C is safe.

If the system had two or more CPUs, two or more processes could run in
parallel, leading to diagonal trajectories.

17.

18.

19.

20.

21.

22,

23.

PROBLEM SOLUTIONS FOR CHAPTER 3 11

No. D can still finish. When it finishes, it returns enough resources to allow
E (or A) to finish, and so on.

With three processes, each one can have two drives. With four processes, the
distribution of drives will be (2, 2, 1, 1), allowing the first two processes to
finish. With five processes, the distribution will be (2, 1, 1, 1, 1), which still
allows the first one to finish. With six processes, each holding one tape drive
and wanting another one, we have a deadlock. Thus for n < 6, the system is
deadlock-free.

There are states that are neither safe nor deadlocked, but which lead to
deadlocked states. As an example, suppose we have four resources: tapes,
plotters, printers, and CD-ROMs, as in the text, and three processes compet-
ing for them. We could have the following situation:

Has Needs Available
A: 2000 1020 0121
B: 1000 0131
C. 0121 1010

This state is not deadlocked because many actions can still occur, for exam-
ple, A can still get two printers. However, if each process asks for its remain-
ing requirements, we have a deadlock.

Yes. Suppose that all the mailboxes are empty. Now A sends to B and waits
for a reply, B sends to C and waits for a reply, and C sends to A and waits for
areply. All the conditions for deadlock are now fulfilled.

To avoid circular wait, number the resources (the accounts) with their account
numbers. After reading an input line, a process locks the lower-numbered
account first, then when it gets the lock (which may entail waiting), it locks
the other one. Since no process ever waits for an account lower than what it
already has, there is never a circular wait, hence never a deadlock.

Comparing a row in the matrix to the vector of available resources takes m
operations. This step must be repeated on the order of » times to find a pro-
cess that can finish and be marked as done. Thus marking a process as done
takes on the order of mn steps. Repeating the algorithm for all n processes
means that the number of steps is then mn?.

The new need matrix after these requests is:

A:2310
B:0112
C:3100
D:3320

12

24.

25S.

26.

27.

28.

29.

30.

31.

PROBLEM SOLUTIONS FOR CHAPTER 3

At this point there is no process all of whose needs can be met, so the system
is in an unsafe state.

If both programs ask for Woofer first, the computers will starve with the end-
less sequence: request Woofer, cancel request, request Woofer, cancel
request, and so forth. If one of them asks for the doghouse and the other asks
for the dog, we have a deadlock, which is detected by both parties and then
broken, but it is just repeated on the next cycle. Either way, if both comput-
ers have been programmed to go after the dog or the doghouse first, either
starvation or deadlock ensues. There is not really much difference between
the two here. In most deadlock problems, starvation does not seem serious
because introducing random delays will usually make it very unlikely. That
approach does not work here.

There are 512,000 bytes around the circumference of the disk. These bytes
can be read in 10 msec, for a data rate of 51,200,000 bytes/sec. Such track-
to-track switching is electronic, such a burst can be maintained for an entire
cylinder, which takes 80 msec to read. After that a seek is needed, during
which time no data can be transferred.

A packet must be copied four times during this process, which takes 4.1
msec. There are also two interrupts, which account for 2 msec. Finally, the
transmission time is 0.83 msec, for a total of 6.93 msec per 1024 bytes. The
maximum data rate is thus 147,763 bytes/sec, or about 12 percent of the nom-
inal 10 megabit/sec network capacity. (If we include protocol overhead, the
figures get even worse.)

The POSITION field is not needed for character devices, since they are not
randomly addressable.

() 10+ 12+ 2+ 18 + 38 + 34 + 32 = 146 cylinders= 876 msec.
®O0+2+12+4+4+36+2 = 60 cylinders= 360 msec.
©0+2+16+2+30+4+4 58 cylinders= 348 msec.

Not necessarily. A program that reads 10,000 blocks issues the requests one
at a time, blocking after each one is issued until after it is completed. Thus
the disk driver sees only one request at a time; it has no opportunity to do
anything but process them in the order of arrival. Harry should have started
up many processes at the same time to see if the elevator algorithm worked.

It is like a subroutine (procedure). Each time the user part invokes the kernel
part, the kernel starts out in the same place. It does not remember where it
was last time.

Two msec 60 times a second is 120 msec/sec, or 12 percent of the CPU.

32.

33.

34.

35.

36.

37.

38.

39.

PROBLEM SOLUTIONS FOR CHAPTER 3 13

Tabs and line feeds on hardcopy terminals may also need delays. Other
examples are checking whether a possibly slow operation actually completed,
as with a disk read or waiting for a network ACK.

After a character is written to an RS232 terminal, it takes a (relatively) long
time before it is printed. Waiting would be wasteful, so interrupts are used.
With memory-mapped terminals, the character is accepted instantly, so inter-
rupts make no sense.

At 110 baud, we have 10 interrupts/sec, which is 40 msec or 4 percent of the
CPU. No problem. At 4800 baud, we have 480 interrupts/sec, which takes
1920 msec. In other words, it cannot be done. The system can handle at most
250 interrupts/sec.

Scrolling the window requires copying 65 lines of 80 characters or 5200 char-
acters. Copying 1 character (12 bytes) takes 6 microsec, so the whole win-
dow takes 31.2 msec. Writing 80 characters to the screen takes 4 msec, so
scrolling and displaying a new line take 35.2 msec for 80 characters. This is
only 2273 characters/sec, or 22.7 kilobaud, barely faster than 19.2 kilobaud.
For color, everything takes four times as long, so we only get 5683 baud.

Escape characters make it possible to output backspaces and other characters
that have special meaning to the driver, such as cursor motion.

Suppose that the user inadvertently asked the editor to print thousands of
lines. Then he hits DEL to stop it. If the driver did not discard output, output
might continue for several seconds after the DEL, which would make the user
hit DEL again and again and get frustrated when nothing happened.

The microprocessor inside the terminal has to move all the characters up one
line by just copying them. Viewed from the inside, the terminal is memory
mapped. There is no easy way to avoid this organization unless special
hardware is available.

The 25 lines of characters, each 8 pixels high, requires 200 scans to draw.
There are 60 screens a second, or 12,000 scans/sec. At 63.6 microsec/scan,
the beam is moving horizontally 763 msec per second, leaving 237 msec for
writing in the video RAM. Thus the video RAM is only available 23.7 per-
cent of the time.

SOLUTIONS TO CHAPTER 4 PROBLEMS

. The chance that all four processes are idle is 1/16, so the CPU idle time is

1/16.

14

. Memory is

PROBLEM SOLUTIONS FOR CHAPTER 4

First fit takes 20 KB, 10 KB, 18 KB. Best fit takes 12 KB, 10 KB, and 9 KB.
Worst fit takes 20 KB, 18 KB, and 15 KB. Next fit takes 20 KB, 18 KB, and 9
KB.

239 bytes and the allocation unit is 2'® bytes, so the number of

allocation units is 2'*. Each of these requires one bit, so 2 KB of memory are
needed for the bit map.

Each list entry will be 12 bytes: 4 bytes for the base address of the hole, 4
bytes for the hole size, and 4 bytes for the pointer to the next entry. In the
best case, memory above the operating system is one big hole, so only 12
bytes are needed. Worst case is memory in which 64-KB data segments and
holes alternate. Excluding the operating system, there are 16,376 such units,
half of them holes, so the list needs 8188 nodes at 12 bytes each for a total of
98,256 bytes or almost 96 KB.

. Real memory uses physical addresses. These are the numbers that the

memory chips react to on the bus. Virtual addresses are the logical addresses
that refer to a process’ address space. Thus a machine with a 16-bit word can
generate virtual addresses up to 64K, regardless of whether the machine has
more or less memory than 64 KB.

6. (a) 8212 (b) 4100 (c) 24684

7. If the virtual address is smaller than the physical address, the entire address

10.

11.

space of a given program can be in memory at once. If it is larger, the entire
program cannot be in memory at once and paging will be needed. Both are
possible. If the two are equal, in theory the program could fit, except that the
operating system probably takes up some space.

They built an MMU and inserted it between the 8086 and the bus. Thus all
8086 physical addresses went into the MMU as virtual addresses. The MMU
then mapped them onto physical addresses, which went to the bus.

A page fault every k instructions adds an extra overhead of n/k nsec to the
average, so the average instruction takes 1 + n/k nsec.

The page table contains 232/2! entries, which is 524,288. Loading the page
table takes 52 msec. If a process gets 100 msec, this consists of 52 msec for
loading the page table and 48 msec for running. Thus 52 percent of the time
is spent loading page tables.

Twenty bits are used for the virtual page numbers, leaving 12 over for the
offset. This yields a 4 KB page. Twenty bits for the virtual page implies 22

pages.

12.

13.

14.

15.

16.

17.

18.

19.

20.

PROBLEM SOLUTIONS FOR CHAPTER 4 15

The reference string is 1(I), 12(D); 2(I), 15(D); 2(I), 15(D); 10(1); 10();
15(D); 10(). The code (I) indicates an instruction reference, whereas (D)
indicates a data reference. Semicolons give the instruction boundaries. Note
that for some architectures an instruction with immediate data might result in
two (I) references, it would depend upon whether the data and the opcode
both fit in a single word, or whether after decoding the instruction a second
fetch is necessary to fetch the immediate data from the (I) space.

The number of pages depends on the total number of bits in @, b, and ¢ com-
bined. How they are split among the fields does not matter.

The effective instruction time is 1004 + 500(1 — &), where & is the hit rate. If
we equate this formula with 200 and solve for 4, we find that 7 must be at
least 0.75.

The R bit is never needed in the TLB. The mere presence of a page there
means the page has been referenced; otherwise it would not be there. Thus
the bit is completely redundant. When the entry is written back to memory,
however, the R bit in the memory page table is set.

With 8 KB pages and a 48-bit virtual address space, the number of virtual
pages is 2*3 /213 which is 2% (about 34 billion).

Technically, a TLB with two entries—one for the code page and one for a
data page—would be enough to make it run, but performance would not be
very good. In practice, there is no architectural reason for a particular size
TLB. It is just an engineering tradeoff. A size of 64 or 128 entries might work
well.

NRU removes page 0. FIFO removes page 2. LRU removes page 1. Second
chance removes page 0.

The page frames for FIFO are as follows:
x0172333300 xx017222233 xxx01777722 xxxx0111177

The page frames for LRU are as follows:

x0172327103 xx017232710 xxx01773271 xxxx0111327

FIFO yields 6 page faults; LRU yields 7.

The inspection order is from oldest to newest. As soon as one is found with
the reference bit 0, it is chosen. The sequence is: N, G, H, D. Since D was
not referenced in the last interval, it is selected for replacement.

16

21.

22.

23.

24.

28S.

26.

27.

28.

PROBLEM SOLUTIONS FOR CHAPTER 4

No, the algorithm is the same. They differ only in the data structure used to
keep track of the pages.

The algorithm will take memory away from each process as a punishment for
not faulting enough. Eventually all processes will begin faulting, but there
will be a large pool of unused pages. The algorithm does not specify what to
do with them.

The counters are:
Page 0: 0110110
Page 1: 01001001
Page 2: 00110111
Page 3: 10001011

The seek plus rotational latency is 14 msec. The transfer rate is 1 MB in 8
msec or 1 KB in 8 usec. For 2-KB pages, the transfer time is 16 usec, for a
total of 14.016 msec. Loading 32 of these pages will take 448.5 msec. For 4-
KB pages, the transfer time is doubled to 32 psec, so the total time per page is
14.032 msec. Loading 16 of these pages takes 224.5 msec. For a single 64-
KB page, the transfer time is 512 psec. Adding in seek and rotational latency
we get 14.5 msec for loading the whole 64 KB. Conclusion: big pages are
more efficient for transfer.

First, there is internal fragmentation on the disk, wasting disk space. Second,
there is internal fragmentation in memory, wasting RAM. Furthermore, large
pages reduce the number of pages in memory, and for a program whose work-
ing set is spread all over its address space, reducing the number of pages may
reduce performance. In an extreme case, if the virtual address space is 4 GB,
physical memory is 64 MB and pages are 4 MB, only 16 pages fit in memory.
If the program is actively using 1024 regions of memory of size 2 KB each
spread uniformly throughout the virtual address space, it will thrash wildly,
even though it is actively using only 2 MB.

The PDP-1 paging drum had the advantage of no rotational latency. This
saved half a rotation each time memory was written to the drum.

The text is eight pages, the data are five pages, and the stack is four pages.
The program does not fit because it needs 17 4096-byte pages. With a 512-
byte page, the situation is different. Here the text is 64 pages, the data are 33
pages, and the stack is 31 pages, for a total of 128 512-byte pages, which fits.
With the small page size it is ok, but not with the large one.

The program is getting 15,000 page faults, each of which uses 2 msec of extra
processing time. Together, the page fault overhead is 30 sec. This means
that of the 60 sec used, half was spent on page fault overhead, and half on
running the program. If we run the program with twice as much memory, we

29.

30.

31.

32.

33.

34.

35.

PROBLEM SOLUTIONS FOR CHAPTER 4 17

get half as memory page faults, and only 15 sec of page fault overhead, so the
total run time will be 45 sec.

What happens if the executable binary file is modified while the program is
running? Using a mixture of pages from the old and new binaries is sure to
crash it. While this event is unlikely, it is a calculated risk. Alternatively, the
binary could be locked against modification while it was being used as a
backing store.

Internal fragmentation occurs when the last allocation unit is not full. Exter-
nal fragmentation occurs when space is wasted between two allocation units.
In a paging system, the wasted space in the last page is lost to internal frag-
mentation. In a pure segmentation system, some space is invariably lost
between the segments. This is due to external fragmentation.

No. The search key uses both the segment number and the virtual page
number, so the exact page can be found in a single match.

When a program is started up, it gets a fixed allocation that it can never
change. The operating system has to know how much to give it. That infor-
mation is in the header. If the programmer is not sure how much is needed,
he needs something like chmem to be able to try different values.

The boot monitor display shows the cs and ds segment addresses as hexide-
cimal numbers, but the sizes are reported as decimal numbers. The data seg-
ment for rs starts at 0x70e000 and occupies 616 + 4696 + 131072 = 136384
bytes, and thus extends to 0x72f4c(0. Round this up to the next click boun-
dary, 0x72f800, to find the next address where another process can be loaded.

If the monitor were given exactly as much space as it needed, the upper limit
of the available memory region would be at 655360 - 52256 = 603104 or
0x933e0. The next lower click boundary is at 0x93000. The kernel’s data seg-
ment starts at 0x5800 and occupies 3140 + 30076 = 33216 bytes, or up to
address 0xd9c0. The next higher click boundary is at 0xdc0O0, so a total of
0x93000 - 0xdc00 = 0x85400 or 545972 (decimal) bytes are available in this
region for MINIX 3 programs.

Even if the boot monitor were given exactly the amount of space it needs,
rather than being loaded on a click boundary, it would not matter to the rest of
MINIX 3, which can only allocate memory in click units.

18

PROBLEM SOLUTIONS FOR CHAPTER 4

SOLUTIONS TO CHAPTER 5 PROBLEMS

. The Unicode character set includes virtual every alphabet on earth as well as

many Japanese kanji symbols, etc. Thus it is possible for Greeks, Russians,
Israelis, Japanese, Chinese, and many other people to give files names in their
own language.

When a program opens a file, it can check if the right magic number is there
to avoid problems when it is inadvertently given an incorrect file. For exam-
ple, because executable files begin with a magic number, the operating sys-
tem can determine if a file is executable or not by checking the magic
number.

. It is plausible. If a file were of type ASCII, one bit is available in each charac-

ter for parity. A file with the parity attribute could have a parity bit in every
character. Such a bit would provide some error detection capability. In fact,
if a run of 512 characters used all 512 parity bits for error correction, a fairly
substantial error correcting code could be implemented in the parity bits.

[T3EE]

You can go up and down the tree as often as you want using “..”. Some of
the many paths are:

/etc/passwd

/./etc/passwd

/.1 Jetc/passwd

/.1.1./etc/passwd

fetc/../etc/passwd
fetc/../etc/../etc/passwd
fetc/..Jetcl../etc/..Jetc/passwd
fetc/..Jetc/..Jetc/../etc/..[etc/passwd

5. No. If you want to read the file again, just randomly access byte 0.

Yes. The rename call does not change the creation time or the time of last
modification, but creating a new file causes it to get the current time as both
the creation time and the time of last modification.

The dotdot component moves the search to /usr, so ../ast puts it in /usr/ast.
Thus ../ast/x is the same as /usr/ast/x.

It is fairly pointless. Given that arrangement, one could create a global root
that listed all the personal roots. Then we are back to the standard hierarchi-
cal file system. Furthermore, with the chroot system call, it is already possi-
ble to have a personal root, at least if you have permission to call chroot.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

PROBLEM SOLUTIONS FOR CHAPTER 5 19

It certainly does. If you can turn /usr/ast into the root, then you can create a
directory efc in the root and place a file passwd in there. If you then issue the
su command, the system looks in your password file to see if you know the
root password. Since you have created this file yourself, you probably know
the password. The entire security system collapses if you can create your
own root. This is why chroot is a superuser only call.

In theory yes they could, but then they would have to fully understand the
layout of directories, which can be quite complicated. Having a special call
to read a directory entry makes reading directories much simpler.

The limit of four comes from the number of table entries in the MBR. By
changing this table to, say, 8 entries, up to 8 operating systems could be sup-
ported. The downside of doing this would be that your system would not be
backward compatible with a great deal of existing software.

Since the wasted storage is between the allocation units (files), not inside
them, this is external fragmentation. It is precisely analogous to the external
fragmentation of main memory that occurs with a swapping system or a sys-
tem using pure segmentation.

The FAT would need 22 entries of 4 bytes each for a total size of 23* bytes.
Not very practical to keep in memory all at once.

Use file names such as /usr/ast/file. While it looks like a hierarchical path
name, it is really just a single name containing embedded slashes.

The bit map requires B bits. The free list requires DF bits. The free list
requires fewer bits if DF < B. Alternatively, the free list is shorter if
F/B < 1/D, where F/B is the fraction of blocks free. For 16-bit disk
addresses, the free list is shorter if 6 percent or less of the disk is free.

Many UNIX files are short. If the entire file fit in the same block as the i-
node, only one disk access would be needed to read the file, instead of two, as
is presently the case. Even for longer files there would be a gain, since one
fewer disk accesses would be needed.

The time needed is & + 40 x (1 — h). The plot is just a straight line.

A hard link is a directory entry that points directly to a file’s metadata (e.g.,
i-node in UNIX). A symbolic link is a small file that contains the name of a
file. Hard links are more efficient than symbolic links. Symbolic links can
point to files on different disks.

Watch out for backing up bad (i.e., damaged and unreadable) blocks, holes
inside files, and shared files.

20

20.

21.

22,

23.

24.

25.

26.

27.

PROBLEM SOLUTIONS FOR CHAPTER 5

The time per block is built up of three components: seek time, rotational
latency, and transfer time. In all cases the rotational latency plus transfer
time is the same, 5.02 msec per block read. Only the seek time differs. For
100 random seeks it is 500 msec; for 2-cylinder seeks it is 10 msec. Thus for
randomly placed files the total is 502 + 500 = 1002 msec, and for clustered
files it is 502 + 2 = 504 msec.

If done right, yes. While compacting, each file should be organized so that all
of its blocks are consecutive, for fast access.

A worm is a freestanding program that works by itself. A virus is a code
fragment that attaches to another program. The worm reproduces by making
more copies of the worm program. The virus reproduces by infecting other
programs.

Nothing (except maybe try to calm the assistant). The password encryption
algorithm is public. Passwords are encrypted by the login program as soon as
they are typed in, and the encrypted password is compared to the entry in the
password file.

No, it does not. The student can easily find out what the random number for
his super-user is. This information is in the password file unencrypted. If it
is, 0003, for example, then he just tries encrypting potential passwords as
Susan0003, Boston0003, IBMPCO0003, etc. If another user has password Bos-
ton0004, he will not discover it, however.

Elinor is right. Having two copies of the i-node in the table at the same time
is a disaster, unless both are read only. The worst case is when both are being
updated simultaneously. When the i-nodes are written back to the disk,
whichever one gets written last will erase the changes made by the other one,
and disk blocks will be lost.

If all the machines can be trusted, it works ok. If some cannot be trusted, the
scheme breaks down, because an untrustworthy machine could send a mes-
sage to a trustworthy machine asking it to carry out some command on behalf
of the super-user. The machine receiving the message has no way of telling if
the command really did originate with the super-user, or with a student.

From a security point of view, it would be ideal. Used blocks sometimes are
exposed, leaking valuable information. From a performance point of view, it
would generate a large number of additional disk writes, thus degrading per-
formance. On the large Burroughs mainframes, files designated as critical are
erased when released, but ordinary files are not. This is a reasonable
compromise.

28.

29.

30.

31.

PROBLEM SOLUTIONS FOR CHAPTER 5 21

To make a file readable by everyone except one person, access control lists
are the only possibility. For sharing private files, access control lists or capa-
bilities can be used. To make files public, access control lists or the rwx bit
mechanism are easy to use. It may also be possible to put a capability for the
file or files in a well-known place in a capability system.

If the capabilities are used to make it possible to have small protection
domains, no; otherwise yes. If an editor, for example, is started up with only
the capabilities for the file to be edited and its scratch file, then no matter
what tricks are lurking inside the editor, all it can do is read those two files.
On the other hand, if the editor can access all of the user’s objects, then Tro-
jan horses can do their dirty work, capabilities or not.

It might be better to define NR_FILPS as 4 * NR_PROCS, so the same aver-
age number of filp entries will be available for each process in a system that
accomodates more processes. There are other constants that might better be
defined as functions of other configurable constants; another example is
NR_INODES, in the same file as NR_FILPS.

Maintaining data integrity in the event of a power outage would be easier.
There will be complications, however. With current memory technology the
main worry is that failure during a write will corrupt the data on the disk.
With non-volatile memory, failure during a read could corrupt data in
memory, so recovering from a failure will require determining which copy of
the data is correct when there is a difference.

