
Lecture 31:

Overview of the MINIX 3 Process Manager.

Part 1 of 2

COS222

Overview of the MINIX 3 Process

Manager.

 Memory management in MINIX 3 is simple:

 paging is not used at all.

 swapping is not used at all.

 Swapping code is available in the complete source and could

be activated to make MINIX 3 work on a system with limited

physical memory.

Overview of the MINIX 3 Process

Manager.
 We will study a user-space server designated the process

manager (PM).

 The process manager handles system calls relating to process
management.

 Of these some are intimately involved with memory management.

 The fork,

 exec,

 and brk calls

 are in this category.

 Process management also includes

 processing system calls related to signals,

 and also handles setting and querying the real time clock

Overview of the MINIX 3 Process

Manager.
 In MINIX 3 the process management and memory management

are merged into one process

 It is possible that in a future release of MINIX, process management
and memory management will be completely separated
 It really should be

 The PM maintains a list of holes sorted in numerical memory
address order.

 When memory is needed, either due to a fork or an exec system call,
the hole list is searched using first fit for a hole that is big enough.

 Without swapping, a process that has been placed in memory remains
in exactly the same place during its entire execution.

 It is never moved to another place in memory, nor does its allocated
memory area ever grow or shrink.

Overview of the MINIX 3 Process

Manager.
 This strategy for managing memory is somewhat unusual and

deserves some explanation:
 1. The desire to keep the system easy to understand.
 2. The architecture of the original IBM PC CPU (an Intel 8088),

 As it had no MMU, so including paging was impossible to start with.

 3. The goal of making MINIX 3 easy to port to other hardware,

 MINIX 3 is targeted to some extent at low-end systems such as
embedded systems.
 Nowadays, digital cameras, DVD players, stereos, cell phones, and

other products have operating systems, but certainly do not support
swapping or paging.

 MINIX 3 is quite a reasonable choice in this world.
 This was true when the book was written, this doesn’t hold true for all smart

phones and/tablets nowadays.

Overview of the MINIX 3 Process

Manager.
 Another way in which implementation of memory management in

MINIX 3 differs from that of many other operating systems.

 The PM (and MM) is not part of the kernel.

 Instead, it is a process that runs in user space and communicates with
the kernel by the standard message mechanism.

 This an example of the separation of policy and mechanism.

 Policy: The decisions about which process will be placed where in
memory are made by the PM.

 Mechanism: The actual setting of memory maps for processes is
done by the system task within the kernel

 This split makes it relatively easy to change the memory
management policy without having to modify the lowest layers of
the operating system

Memory Layout

 MINIX 3 programs may be compiled to use combined I

and D space, (instruction and data)

 in which all parts of the process (text, data, and stack) share a

block of memory which is allocated and released as one block.

 This was the default for the original version of MINIX. In

MINIX 3, however, the default is to compile programs to use

separate I and D space.

 The later being more complicated.

Memory Layout
 We will discussed the simpler combined approach first.

 In normal MINIX 3 operation memory is allocated on “two” occasions:

 First, when a process forks,

 the amount of memory needed by the child is allocated

 Second, when a process changes its memory image via the exec system call,
 the space occupied by the old image is returned to the free list as a hole, and memory

is allocated for the new image. (not necessarily using the deallocated space)

 There is a third case (though rare): a system process can request memory for

its own use;
 for instance, the memory driver can request memory for the RAM disk. This can

only happen during system initialization.

 Memory is also released whenever a process terminates, either by
exiting or by being killed by a signal

Memory Layout

 Figure below shows memory allocation during a fork and an

exec.

 (a) Originally. (b) After a fork. (c) After the child does an exec.

Memory Layout

 Doing this kind of memory management is not trivial.

 Consider the possible error condition that there is not enough

memory to perform an exec.

 A test for sufficient memory to complete the operation should

be performed before the child's memory is released, so the

child can respond to the error somehow.

 This means the child's memory must be considered as if it were

a hole while it is still in use.

Memory Layout

 When memory is allocated, either by the fork or exec system

calls, a certain amount of it is taken for the new process.

 In the former case, the amount taken is identical to what the

parent process has.

 In the latter case, the PM takes the amount specified in the

header of the file executed.

 Once this allocation has been made, under no conditions is the

process ever allocated any more total memory.

Memory Layout

 Separate I and D space:

 Programs with separate I and D space take advantage of an

enhanced mode of memory management called shared

text.

 When such a process does a fork, only the amount of memory

needed for a copy of the new process' data and stack is

allocated.

 Both the parent and the child share the executable code already

in use by the parent

Memory Layout

 When such a process does an exec,

 the process table is searched to see if another process is already

using the executable code needed.

 If one is found, new memory is allocated only for the data and

stack, and the text already in memory is shared.

 Shared text complicates termination of a process.

 When a process terminates it always releases the memory

occupied by its data and stack.

 But it only releases the memory occupied by its text segment

after a search of the process table reveals that no other current

process is sharing that memory

Memory Layout

 Loading a program from disk file to internal memory:

Memory Layout
 The header on the disk file contains information about the sizes of

the different parts of the image, as well as the total size.

 In the header of a program with common I and D space, a field
specifies the total size of the text and data parts;
 these parts are copied directly to the memory image.

 The data part in the image is enlarged by the amount specified in the
bss (historically Block Started by Symbol) field in the header.
 This area is cleared to contain all zeroes and is used for uninitialized static

data.

 The total amount of memory to be allocated is specified by the total
field in the header.

 The symbol table is used for debugging and is not copied into
memory.

Memory Layout

 If, for example, a program has 4 KB of text, 2 KB of data plus

bss, and 1KB of stack, and the header says to allocate 40 KB

total, the gap of unused memory between the data segment

and the stack segment will be 33 KB.

 It is possible to change the amount of memory available for

expansion on initialization

 E.g. chmem =10240 a.out

 which changes the header field so that upon exec the PM

allocates a space 10240 bytes more than the sum of the

initial text and data segments.

Memory Layout

 For a program using separate I and D space (indicated by a bit

in the header that is set by the linker), the total field in the

header applies to the combined data and stack space only.

 So not including the text segment.

 A program with 4 KB of text, 2 KB of data, 1 KB of

stack, and a total size of 64 KB

 will be allocated 68 KB

 (4 KB instruction space (text), 64 KB stack and data space),

 Meaning there is 64-2-1=61K space for the stack and data segments to

grow.

Message Handling

 Like all the other components of MINIX 3, the process

manager is message driven.

 After the system has been initialized, PM enters its main

loop,

 which consists of waiting for a message,

 carrying out the request contained in the message,

 and sending a reply.

Message Handling

 Two message categories may be received by the process

manager.

 For high priority communication between the kernel and

system servers such as PM,

 a system notification message is used

 The details of which are discussed in 4.8.

 The majority of messages received by the process manager

result from system calls originated by user processes.

Message Handling

 For this category, the next figure gives the list of

 legal message types,

 input parameters,

 and values sent back in the reply message.

Message Handling

Message Handling

Process Manager Data Structures and

Algorithms

 Two key data structures are used by the process manager:

 the process table.

 and the hole table.

 We will begin with a discussion of the former.

 Some process table fields are

 needed by the kernel,

 others by the process manager,

 and yet others by the file system.

 In MINIX 3, each of these three pieces of the operating
system has its own process table, containing just those fields
that it needs.

Process Manager Data Structures and

Algorithms

 With a few exceptions, entries correspond exactly, to keep

things simple.

 Thus, slot k of the PM's table refers to the same process as slot k

of the file system's table.

 When a process is created or destroyed, all three parts update

their tables to reflect the new situation, in order to keep them

synchronized.

Process Manager Data Structures and

Algorithms

 The exceptions are processes that are not known outside of

the kernel,

 either because they are compiled into the kernel, like the

CLOCK and SYSTEM tasks,

 or because they are place holders like IDLE, and KERNEL.

 In the kernel process table their slots are designated by

negative

 numbers. These slots do not exist in the process manager or

file system process tables.

Processes in Memory
 The PM's process table is called mproc and its definition is given in

src/servers/pm/mproc.h.

 It contains all the fields related to a process' memory allocation, as
well as some additional items.
 The most important field is the array mp_seg, which has three entries,

 for the text,

 data,

 and stack segments, respectively.

 Each entry is a structure containing the
 virtual address,
 physical address,
 and length of the segment,

 all measured in clicks rather than in bytes.

Processes in Memory

 The size of a click is implementation dependent.

 In early MINIX versions it was 256 bytes.

 For MINIX 3 it is 1024 bytes.

 All segments must start on a click boundary and occupy an

integral number of clicks.

 ss

 Figure (a) A process in memory.

 (b) Its memory representation for combined I and D space.
 In this model, the text segment is always empty, and the data segment contains both text and

data.

 (c) Its memory representation for separate I and D space

Shared Text

 The contents of the data and stack areas belonging to a

process may change as the process executes,

 but the text does not change.

 It is common for several processes to be executing copies of

the same program,

 for instance several users may be executing the same shell.

 Memory efficiency is improved by using shared text.

Shared Text

 When exec is about to load a process, it opens the file

holding the disk image of the program to be loaded and reads

the file header.

 If the process uses separate I and D space we can utilize shared

text.

 If a process in memory is found to be executing the same

program that is about to be loaded, there is no need to

allocate memory for another copy of the text.

 So only the data and stack portions are set up in a new memory

allocation.

Shared Text

The Hole List

 The other major process manager data structure is the hole

list (book states hole table, which is a mistake):

 which lists every hole in memory in order of increasing

memory address.

 The gaps between the data and stack segments are not

considered holes; they have already been allocated to processes.

 Consequently, they are not contained in the free hole list.

The Hole List

 Each hole list entry has three fields:

 the base address of the hole, in clicks;

 the length of the hole, in clicks; and

 a pointer to the next entry on the list.

 The list is singly linked, so it is easy to find the next hole

starting from any given hole, but to find the previous hole,

you have to search the entire list from the beginning until

you come to the given hole

The Hole List

 The reason for recording everything about segments and

holes in clicks rather than bytes is simple: it is much more

efficient in terms of space.

 Greater range

 However lower precision.

 To allocate memory,

 the hole list is searched, starting at the hole with the lowest

address, until a hole that is large enough is found (first fit).

 The segment is then allocated by reducing the hole by the

amount needed for the segment, or in the rare case of an exact

fit, removing the hole from the list.

The Hole List

 This scheme is fast and simple but suffers from both a small

amount of internal fragmentation (up to 1023 bytes may be

wasted in the final click, since an integral number of clicks is

always taken) and external fragmentation.

